Beyond Stochastic Volatility and Jumps in Returns and Volatility
نویسندگان
چکیده
While a great deal of attention has been focused on stochastic volatility in stock returns, there is strong evidence suggesting that return distributions have time-varying skewness and kurtosis as well. Under the risk-neutral measure, for example, this can be seen from variation across time in the shape of Black-Scholes implied volatility smiles. This paper investigates model characteristics that are consistent with variation in the shape of return distributions using a stochastic volatility model with a regime-switching feature to allow for random changes in the parameters governing volatility of volatility, leverage effect and jump intensity. The analysis consists of two steps. First, the models are estimated using only information from observed returns and option-implied volatility. Standard model assessment tools indicate a strong preference in favor of the proposed models. Since the information from option-implied skewness and kurtosis is not used in fitting the models, it is available for diagnostic purposes. In the second step of the analysis, regressions of option-implied skewness and kurtosis on the filtered state variables (and some controls) suggest that the models have strong explanatory power for these characteristics.
منابع مشابه
Bayesian Analysis of Stochastic Volatility Models with Levy Jumps: Application to Value at Risk
In this paper we analyze asset returns models with diffusion part and jumps in returns with stochastic volatility either from diffusion or pure jump part. We consider different specifications for the pure jump part including compound Poisson, Variance Gamma and Levy α-stable jumps. Monte Carlo Markov chain algorithm is constructed to estimate models with latent Variance Gamma and Levy α−stable ...
متن کاملEstimating Correlated Jumps and Stochastic Volatilities
We formulate a bivariate stochastic volatility jump-diffusion model with correlated jumps and volatilities. An MCMC Metropolis-Hastings sampling algorithm is proposed to estimate the model’s parameters and latent state variables (jumps and stochastic volatilities) given observed returns. The methodology is successfully tested on several artificially generated bivariate time series and then on t...
متن کاملBayesian Analysis of Stochastic Volatility Models with Levy Jumps: Application to Risk Analysis
In this paper I analyze a broad class of continuous-time jump diffusion models of asset returns. In the models, stochastic volatility can arise either from a diffusion part, or a jump part, or both. The jump component includes either compound Poisson or Lévy α-stable jumps. To be able to estimate the models with latent Lévy α−stable jumps, I construct a new Markov chain Monte Carlo algorithm. I...
متن کاملStochastic Volatility with Reset at Jumps
This paper presents a model for asset returns incorporating both stochastic volatility and jump e ects. The return process is driven by two types of randomness: small random shocks and large jumps. The stochastic volatility process is a ected by both types of randomness in returns. Speci cally, in the absence of large jumps, volatility is driven by the small random shocks in returns through a G...
متن کاملOption Valuation with Jumps in Returns and Volatility
We price options when there are jumps in the pricing kernel and correlated jumps in returns and volatilities. A limiting case of our GARCH process consists of a model where both asset returns and local volatility follow jump diffusion processes with correlated jump sizes. When the jump processes are shut down our model reduces to Duan’s (1995) GARCH option model; when the stochastic volatility ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012